Joanna Bitton and Zoe Papakipos. Augly: a data augmentations library for audio, image, text, and video. https://github.com/facebookresearch/AugLy, 2021. doi:10.5281/zenodo.5014032.
Alexander Buslaev, Vladimir I. Iglovikov, Eugene Khvedchenya, Alex Parinov, Mikhail Druzhinin, and Alexandr A. Kalinin. Albumentations: fast and flexible image augmentations. Information, 2020. URL: https://www.mdpi.com/2078-2489/11/2/125, doi:10.3390/info11020125.
Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, and Richard Zhang. Ensembling with deep generative views. In CVPR. 2021.
Francois Chollet. Deep learning with Python. Simon and Schuster, 2017.
Ronan Collobert, Samy Bengio, and Johnny Mariéthoz. Torch: a modular machine learning software library. Technical Report, Idiap, 2002.
MMCV Contributors. MMCV: OpenMMLab computer vision foundation. https://github.com/open-mmlab/mmcv, 2018.
Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. Proceedings of the International Conference on Learning Representations, 2019.
Alexander B. Jung, Kentaro Wada, Jon Crall, Satoshi Tanaka, Jake Graving, Christoph Reinders, Sarthak Yadav, Joy Banerjee, Gábor Vecsei, Adam Kraft, Zheng Rui, Jirka Borovec, Christian Vallentin, Semen Zhydenko, Kilian Pfeiffer, Ben Cook, Ismael Fernández, François-Michel De Rainville, Chi-Hung Weng, Abner Ayala-Acevedo, Raphael Meudec, Matias Laporte, and others. imgaug. https://github.com/aleju/imgaug, 2020. Online; accessed 01-Feb-2020.
Xiaoyang Rebecca Li, Yannick Hold-Geoffroy, Oxholm Geoffrey, Krishna Kumar Singh, Zhifei Zhang Zhang, Richard Zhang, Maksym Andriushchenko, and others. Beacon-aug: a cross-library image augmentation toolbox. https://github.com/adobe-research/beacon-aug, 2021. Online; accessed Sep-22-2021.
Sébastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In Proceedings of the 18th ACM international conference on Multimedia, 1485–1488. 2010.
Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On buggy resizing libraries and surprising subtleties in fid calculation. arXiv preprint arXiv:2104.11222, 2021.
Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee, and Gary Bradski. Kornia: an open source differentiable computer vision library for pytorch. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 3674–3683. 2020.
Krishna Kumar Singh, Hao Yu, Aron Sarmasi, Gautam Pradeep, and Yong Jae Lee. Hide-and-seek: a data augmentation technique for weakly-supervised localization and beyond. arXiv preprint arXiv:1811.02545, 2018.